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Abstract 

This work presents operating an algorithm of one Statistical Method of Mathematical Grouping for classification numerical well-

logging data. The algorithm uses the correlation matrices of input data. The registered data are well-logging characteristics presented like 

function of the borehole depth. The algorithm is based on principles of grouping and its evaluation. Results of interpretation are probable 

types of formations characterized by their physical properties and they are linked to the borehole depth. So, we form the borehole profile 

after geophysical characteristics which can be compared with the geological profile. 
 

Abstrakt 

Práce představuje operace s algoritmem jedné statistické metody matematického grupování, pro klasifikaci numerických karotážních 

údajů. Tento algoritmus používá korelační matice vstupních dat. Registrované údaje jsou karotážní charakteristiky presentované jako 

funkce hloubky vrtu. Algoritmus je založen na principech grupování a jeho vyhodnocení. Výsledky interpretace představují pravděpodobné 

typy hornin, které jsou charakterizovány svými fyzikálními vlastnostmi a které jsou navázány na hloubku vrtu. Vytvářejí se tak profily vrtu 

podle geofyzikálních charakteristik, které se mohou srovnávat s geologickým profilem. 
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1 Introduction 
Statistics can be used in various mathematical analyses. One of the main methods is Mathematical Grouping. You can evaluate not 

only numeric data, but too logic data as are “true” denoted with symbol “1” and “false” with symbol “0”. It is heuristic cases when 

classification works with logic data are marked with logic symbols “1” and “0”; in the next evaluation they will change in numerical values 

with numerical symbols 1 and 0 and respect all mathematical operations of method Mathematical Grouping. 

Each geological investigation of various objects presents a set of data which needs to be evaluated. You can work with both numeric 

and logic data. The main problem of geological tasks is grouping well-logging data into groups and assign them to geological objects. As 

for heuristic cases SIROTINSKAYA, (1986) distinguish three groups of these methods. Their relations tend often to methods Mathematical 

Logic.  

Newer methods of Mathematical Logic use highly professional instruments as branched logic networks. These simulate human 

neural nets and imitate human cerebration, fuzzy logic. Modern algorithms are constructed as self-taught systems and tend to artificial 

intelligence, AI. System of geophysical data is combined with next geological systems such as petrographic, mineralogic, hydrogeologic 

and next ones are. They are often highly specialized on the selected geological area being perspective for next prospection and mining. 

Such new published works are, for example, CHEN et al, (2020), VUKADIN (2023), KARPENKO (2022) and CORINA (2018).  
 

2 Input data 
Input data are all identical with those having been used in the work investigating the Component Analysis in well-logging; more is in 

RYŠAVÝ, (2023). It offers to compare results of Mathematical Logic with results of that method. Basic is tab.1 that is identical to tab.1 of 

the mentioned work. It presents five physical characteristics registered simultaneously with the borehole depth. They are the following 

ones: 

 The apparent resistivity of formations/ores; R [Ωm] 

 The apparent magnetic susceptibility of formations/ores; χ×10
6
 [SI], 

 The apparent bulk activity of radionuclides being in formations/ores; σ [μBq/g] 

 The apparent bulk density of formations/ores; ρ [g/cm
3
] 

 The apparent chargeability formations/ores; ε, characteristic is dimensionless. 

The tab.1 has two correlation matrices denoted as tab.3 and tab.7. Numeric values of mentioned three tables are same as data tables 

tab1, tab.3 and tab.7 of work RYŠAVÝ (1923). The first correlation matrix is matrix of characteristics, tab.3; the second one is the 

correlation matrix of the depth points, tab.7. The last is more important than the first. All operations as grouping and forming the partial 

matrices for partial groups of objects are proceeding from those two matrices. The submitted work needed urgently real well-logging data 

for verification of algorithm. However, such data I did not have. Luckily, in the work BELONIN et al. (1982) there was the table of input 
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data of surface measurements {14×5}; 14 points of observing and 5 characteristics. This table served as a base for Tab.1of work RYŠAVÝ 

(1923). The numeric data of the input table stuck the same, but the registered characteristics was changed. For example, I replaced the 

thickness of the Jurassic cover with the mass activity of radionuclide [μBq/g] and were the next changes. All 14 points of observations were 

attached to the depth of the borehole. Thus, the virtual practice data-set section of a virtual borehole emerged. Such borehole section was 

needed for performing how to imply the algorithm of logic method into interpretation well-logging data set, and how to make geological 

interpretation. It had not any possibility to obtain well-logging logs, because the firm´s records are guarded because of competition. This 

was the only possibility how to have a short section of virtual borehole section. Thanks to the virtual dataset of tab.1 processing of 

implication of the logic method was possible. Without the virtual dataset it would not be possible to demonstrate how logical algorithm to 

imply for well-logging data. It was and remains by the aim of this work. 

Tab.1 has some data, which need short commentary. They are columns having characteristics σ and ρ. Three data of radioactivity σ 

are zero, σ = 0. And the same is for characteristic of density. One 

data of density ρ has too zero value, ρ = 0. In first view it cannot 

be, but who knows well of well-logging data records cannot such 

zero value all exclude. It is about case of failure recording, for 

example, unexpected voltage drops. It is not excluded that in the 

bigger datasets the depth points having in columns value zero will 

form own subgroups with common alphabetic character “0” inside 

of the main groups. Such subgroups can then be denoted as not 

available. 

Next commentary is again for characteristic ρ. It relates to 

high and low values of the rock density. They are following 

values: ρ = 0.70g/cm
3
 and ρ = 4.04g/cm

3
. Both values are no extra 

ones. They are densities that are known in geology. As for the 

lower value, it can be the water highly saturated with gas, denoted 

too as a gas-cut water, or the associated water when 

simultaneously you drill water and oil; ρg ~ 0 g/cm
3
, ρo ~ 0.7– 

0.9g/cm
3
. Such cases can be in caverns with higher diameter 

formed in the drilling. It can be often in Flysch Formation, and it is 

not an extra case. The higher value can be ores of the heavy 

chemical element as Hg, Pb, Fe, Ba, and the next ones. It can 

happen in geology. I can present some ore and their densities; as 

are HgS: ρ = 8.1g/cm
3
, PbS: ρ = 7.5 g/cm

3
, FeS2: ρ = 5.1 g/cm

3
, BaSO4 ρ = 4.5 g/cm

3
… An existence of FeS2 in rocks can be often repeated 

 
Tab.1  The input characteristics depicted as data of well logs 

i h [m] R [Ωm] χ×10
6
[SI] σ[μBq/g] ρ[g/cm

3
] ε  

1 350 22.06 50 0 2.5 5.7 

2 350.5 70 80 1.5 0.7 1.5 

3 351 9.08 140 0 0.28 1.46 

4 351.5 28.9 160 0.9 1.5 3.5 

5 352 59.6 150 3 3 3.53 

6 352.5 136 55 50.7 8.58 6.52 

7 353 107.27 130 0 0 2.55 

8 353.5 63 110 50.4 4.04 4.24 

9 354 89.25 58 4.7 3.54 1.57 

10 354.5 27.63 148 1.5 2.68 4.37 

11 355 200 40 1.9 3.2 2.3 

12 355.5 68 130 9.6 3.06 2.05 

13 356 30 80 2.5 3.25 4.2 

14 356.5 81.95 20 1.5 3.25 3.42 

x  70.91 96.5 9.16 2.83 3.35 

s 49.57 45.37 17.07 2.01 1.51 
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case. It is the main raw material for production of oil vitriol, H2SO4. Tab.1 and tabs. 3 and 7 served with all numeric data as fundament for 

interpretation in the work RYŠAVÝ, (2023). I decided all three before tables to use again for interpretation with Method Mathematical 

Grouping. 

  

3 Principles of classification of objects and their deposition into groups 
Classification of well-logging data is made in this paper in accordance with algorithm “Class” published by SIROTINSKAYA, 

(1986). This method works with the correlation matrix of well-logging data. As an input set there has been used the set of data before used 

for the paper about application of the Component Analysis. Therefore, I refer to this work. It is big advantage for mutual comparison 

between two different methods solving identical problem. Algorithm “Class” works on principles of Mathematical Grouping.  

We know to work with the classic correlation matrix when the data are presented like numerical quantified values. However, the 

correlation matrix can be presented, as well, with data of logic values using two basic figures 0 and 1. They belong to values of quality as 

an assortment of colours and next similar characteristics are. Just this is also published in work SIROTINSKAYA, (1986), input table can 

have all terms expressed figures like 0 and 1 being in m-rows and in n-columns. The correlation matrix is defined then with the help of the 

measure of coincidence E (Xi, Xj) for i-th object and j-th characteristic of the above matrix of the input table. Characteristics Xi and Xj are 

vectors of the input matrix having dimension denoted as {m×n}. Calculation of the mentioned characteristic E (Xi, Xj) tends to be 

determining elements of correlation matrix having m rows and columns. 

1

2 2

1 1

, ,( ) cos( ) , , 1,2.., ,

n

ip jp
p

n n

ip jp
p p

E i j m
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
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i j i jX X X X        (1) 

where ip , jp  = the coordinates expressed in form of figures 0 and 1; m is the number of rows and n is the number of columns of input 

matrix with figures 0 and 1.  

The formula is saying that numerator of fraction is the sum of 

multiplication of figures 0 and 1 for selected terms of the input table, 

whereas the denominator of fraction presents square root of 

multiplication of two sums squared terms of 0 and 1. Attention, 

numeric calculation after formula (1) is calculation in decimal system 

with two numerical values 0 and 1. The figures here are not logic 

values.  

In case tab.1 when we use classic correlation matrix expressed 

with figures presenting numerical values, the situation is simpler. As 

 
Tab.2  The classification of correlation coefficients 

Degree of correlation Interval 

Low                     0 ≤ | r | < 0.3 

Mild                  0.3 ≤ | r | < 0.5 

Significant                  0.5 ≤ | r | < 0.7 

High                  0.7 ≤ | r | < 0.9 

Very high                  0.9 ≤ | r | < 1 
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the input set is depicted like relations of the characteristics registered to the borehole depth, we receive two matrices: after characteristics 

and after the points of depth. So there exist again two different variances of evaluation completing information one another. 
Because it needs to evaluate the degree of correlation between two objects, there uses classification according to CHADDOCK, in 

ŠKRÁŠEK and TICHÝ, (1983), part 3. It is in tab.2. 

 

4 Interpretation of the correlation matrix after characteristics 
4.1 Mathematical processing 

This is problem of Grouping. The correlation matrix has dimensions {5×5}, tab.3. All terms of this matrix are numbers. The first 

step of grouping is you must mark the maximal values expressed in their absolute values being in each of rows. I emphasize, they are 

in rows. We do not distinguish sign of terms. Maximal values on the main diagonal denoted as 1 are crossed out. The input matrix with 

denoted values in bold type is presented by tab.3. 

The second step is we calculate the average coefficient of correlation of all terms lying under the main diagonal. We receive 

n0 = 4+3+2+1= 10 terms. The formula of calculation is following:  
 

,
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where r0 = the average coefficient of correlation 

In this case n0 = 10 and | r0 | = | + 0.126 |. The next step is 

testing of maximal values denoted as r
(max)

ji  towards | r0 |. We are 

allowed to group if all maximal values are bigger than | r0 |. It is 

condition that: 

.rallfor...|r||r|
(max)

ji

(max)

ji0   (4) 

If the only one of values does not fill condition (4), you must not 

make grouping of characteristics. 

We have got three r
(max)

ji : |-0.501 |, |+ 0.743 | and |+ 0.653 |. 

Because all three characteristics are bigger than | r0 | we are allowed 

to group. The rows and columns are numbered as it is in tab.3. We 

Tab.3  The correlation matrix after characteristics with denoted 

            maximal values 

 

  R [Ωm] χ ×10
6
[SI] σ[μBq/g] ρ [g/cm

3
] ε  

  1 2 3 4 5 

R [Ωm] 1 1 -0.501 0.252 0.391 -0.074 

χ ×10
6
[SI] 2 -0.501 1 -0.118 -0.423 -0.178 

σ[μBq/g] 3 0.252 -0.118 1 0.743 0.512 

ρ [g/cm
3
] 4 0.391 -0.423 0.743 1 0.653 

ε  5 -0.074 -0.178 0.512 0.653 1 

 

0.653 
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create succession of numbers according to the following way. The underlined number is the number of columns. The next numbers of 

each succession being not underlined are numbers of rows of those terms bold typed in the column. This process is made for all columns. 

Some of them can have the only underlined number, because there are no terms having maximal values, the other have two or more terms 

of maximal values. The result of grouping is in tab.4. Process of grouping is made in the way; we choose group having most figures in 

column and we find common figures in other successions.  

The figures can have either direct relation or mediated one. It is our case for 1 and 2 of group {A} and for 3, 4 and 5 of group {B}. 

The group {A} belongs to the direct relation, whereas group {B} presents the mediated relation. However, grouping is all sure closed. The 

underlined figures in column “Succession” of tab.4 denote columns in tab.3. 

So, we have two groups: {A} = {R, χ} and {B} = {σ, ρ, ε}. They are the groups of the first order. Now, we must calculate the 

correlation coefficient between both groups; it holds {A} = {1,2}, {B} = {3,4,5}.  

  .025.0
6

1
252423151413  rrrrrrrAB   (5) 

Number coefficients of correlation present 2×3= 6 terms. We are to form the matrix of groups {A} and {B}. It is in tab.5. The only 

maximal value of both rows is | -0.025 |. We evaluate the value denoted like | r
(max)

ji | to | r0 | after condition (4). As this condition does not 

hold, the grouping is over. The values of the correlation coefficients are in tab.6. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab.4 The denoted successions and 

           groups after characteristics 

Succession Group 

1,2 A = {1,2} 

2,1 B = {3,4,5} 

3,4  

4,3,5  

5  
 

Tab.5 The correlation matrix 

            of groups {A} and {B} 

            after characteristics 

 A B 

A 1 -0.025 

B -0.025 1 
 

Tab.6 The table of correlation coefficients 

            r0 and rAB   valid for characteristics 

r0 0.126 

rAB -0.025 
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4.2 Results and discussion 
We obtained two basic groups {A} and {B}. In such case you can 

construct the map of relations between characteristics. Both groups present object 

characterized as the sort of rock/ore. Results of mapping you will find on fig.1. 

Both groups you can characterize. The group {A} can be massive ore or mafic 

rock being electrically conductive and magnetic. It is electric conductor. 

However, the group {B} presentsdielectric. This dielectric is radioactive and has 

high density. It seems as if radioactive ore have been dispersed in the matrix of 

sedimentary rock. 

The degree of correlation between {A} and {B} is low, I should say there 

is not any correlation. Correlation inside of group {A} between χ and R is 

denoted as significant, tab.2, and confirms electrical conductivity of object. For 

group {B} it holds that correlation between σ and ρ is high, whereas, resting two 

relations are only significant. See again tab.2. It needs to say that such 

identification of objects confirms only relations among them. 
 

 

  

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 The map of relations between characteristics 



 
 

- 8 - 

 

 

5 Interpretation of the correlation matrix after the depth points 
5.1 Mathematical processing 

The input data are presented by the correlation matrix in tab.7. These data are calculated due to the table denoted as tab.1 and 

published before in the work interested in interpretation of Component Analysis; RYŠAVÝ, (2023). Maximal values of the correlation 

coefficients regardless of sign are typed in tab.7 with bold figures for every row. Grouping is made in accordance with principles explained 

in the chapter before. 

Coefficient of correlation from tab.10, | r0 | = | -0,065 |, was again counted as an average sum all terms being below the main 

diagonal of tab.7. Number of all terms below the diagonal is n0 = 13+12+…+2+1 = 91. The above conclusion after condition (4) holds 

 

Tab.7  The correlation matrix after the depth points with denoted maximal values; the last row presents partial 

            sums 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 -0.854 -0.486 -0.049 -0.169 0.464 -0.514 0.058 -0.544 0.317 -0.327 -0.860 0.885 0.412 

2 -0.854 1 0.366 -0.004 -0.003 -0.508 0.789 -0.109 0.367 -0.417 0.502 0.548 -0.991 -0.308 

3 -0.486 0.366 1 0.869 0.808 -0.846 0.522 0.051 -0.427 0.616 -0.570 0.762 -0.296 -0.996 

4 -0.049 -0.004 0.869 1 0.931 -0.824 0.430 -0.165 -0.739 0.907 -0.714 0.435 0.109 -0.898 

5 -0.169 -0.003 0.808 0.931 1 -0.828 0.389 -0.403 -0.503 0.861 -0.562 0.569 0.086 -0.815 

6 0.464 -0.508 -0.846 -0.824 -0.828 1 -0.830 0.430 0.382 -0.554 0.215 -0.617 0.410 0.836 

7 -0.514 0.789 0.522 0.430 0.389 -0.830 1 -0.441 -0.154 0.088 0.254 0.366 -0.701 -0.501 

8 0.058 -0.109 0.051 -0.165 -0.403 0.430 -0.441 1 -0.092 -0.176 -0.412 -0.052 0.067 -0.072 

9 -0.544 0.367 -0.427 -0.739 -0.503 0.382 -0.154 -0.092 1 -0.814 0.752 0.246 -0.483 0.503 

10 0.317 -0.417 0.616 0.907 0.861 -0.554 0.088 -0.176 -0.814 1 -0.818 0.154 0.511 -0.665 

11 -0.327 0.502 -0.570 -0.714 -0.562 0.215 0.254 -0.412 0.752 -0.818 1 -0.133 -0.553 0.625 

12 -0.860 0.548 0.762 0.435 0.569 -0.617 0.366 -0.052 0.246 0.154 -0.133 1 -0.559 -0.705 

13 0.885 -0.991 -0.296 0.109 0.086 0.410 -0.701 0.067 -0.483 0.511 -0.553 -0.559 1 0.232 

14 0.412 -0.308 -0.996 -0.898 -0.815 0.836 -0.501 -0.072 0.503 -0.665 0.625 -0.705 0.232 1 

Sum -1.670 0.231 0.491 -0.528 -1.207 0.272 -1.089 -0.736 0.203 -0.818 -0.062 -1.264 0.232  

 



 
 

- 9 - 

 

Tab.8 The denoted successions and  

           groups for  the  depth  points 

Succession Group 

1,12   A ={ 1,2,12,13 } 

2,13   B = { 4,5,9,10,11 } 

3,6,14   C = { 3,6,7,8,14 } 

4,5,10   

5,4   

6,7   

7,8   

8,   

9,   

10,9,11   

11,   

12,   

13,1,2   

14,3   

again for grouping after maximal values in absolute value. Maximal values of the correlation coefficients regardless of sign are typed with 

bold figures for every row and are higher than r0. So, we have three basic groups of depth points denoted as A, B and C; all present the 

main groups; {A}= {1,2,12,13}, further 

{B}= {4,5,9,10,11} and {C}= {3,6,7,8,14}. Successions and groups are depicted in tab.8. We find 

what the depth points connect among.  

 

 

 

 

 

 

 

 

 

 

There in tab.9 are values of the correlation coefficients rAB, rAC and rBC. This table presents the correlation matrix of groups {A}, {B}, 

and {C}. The numerical values of the correlation coefficients after formulas and the average coefficient of correlation are in tab.10. Number 

coefficients of correlation present following terms; rAB: 4×5 =20 terms, rAC: 4×5 =20 terms and rBC: 5×5 =25 terms. We test again after 

condition (4). Coefficient of correlation is | r0 | = |-0.065|. For rAB 
(max)

 = |+0.031| and rAC 
(max)

 = |-0.019| the test of inequality is not filled, 

only for rBC 
(max)

 = |-0.072| it is filled. That means that grouping is over. Groups {A}, {B}, and {C} are final ones. 

 

 

 

 

 

Tab.10  The  correlation  coefficients 

              r0, rAB, rAC and rBC valid for 

              the depth points 

r0 -0.065 

rAB 0.031 

rAC -0.019 

rBC -0.072 

 

 

Tab.9  The correction matrix of groups 

            {A}, {B} and {C} after the depth 

             points 

 A B C 

A 1 0.031 -0.019 

B 0.031 1 -0.072 

C -0.019 -0.072 1 
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Groups {A}, {B}, and {C} have subgroups of the depth points. Tab.11 presents the correlation matrix of {A}. The maximal positive 

values in rows are denoted in bold. Process of grouping presented with successions and subgroups is in tab.12. There exist two subgroups 

{A1} = {1, 13} and then {A2} = {2, 12}. The same has been made with groups {B} and {C}. The correlation matrix of {B} is in tab.13, 

while successions and subgroups in tab.14. We have got again two subgroups: {B1} = {4, 5, 10} and {B2} = {9, 11}. The correlation matrix 

of {C} is in tab.15 and its successions and subgroups in tab.16. The group {C} was divided into two subgroups: {C1} = {6, 8, 14} and {C2} 

= {3,7}. 

 

 1,4 1,5 1,9 1,10 1,11 2,4 2,5 2,9 2,10 2,11 12,4 12,5 12,9 12,10 12,11 13,4 13,5 13,9 13,10 13,11

1

20
ABr r r r r r r r r r r r r r r r r r r r r                     . (6) 

 1,3 1,6 1,7 1,8 1,14 2,3 2,6 2,7 2,8 2,14 12,3 12,6 12,7 12,8 12,14 13,3 13,6 13,7 13,8 13,14

1
.

20
ACr r r r r r r r r r r r r r r r r r r r r                      (7) 

4,3 4,6 4,7 4,8 4,14 5,3 5,6 5,7 5,8 5,14 9,3 9,6 9,7 9,8 9,14 10,3 10,6 10,7 10,8 10,14

11,3 11,6 11,7 11,8 11,14

1
.

25
BC

r r r r r r r r r r r r r r r r r r r r
r

r r r r r

                    
  

    
 (8) 

Groups {A}, {B}, and {C} have subgroups of the depth points. Tab.11 presents the correlation matrix of {A}. The maximal positive 

values in rows are denoted in bold. Process of grouping presented with successions and subgroups is in tab.12. There exist two subgroups 

{A1} = {1, 13} and then {A2} = {2, 12}. The same has been made with groups {B} and {C}. The correlation matrix of {B} is in tab.13, 

while successions and subgroups in tab.14. We have got again two subgroups: {B1} = {4, 5, 10} and {B2} = {9, 11}. The correlation matrix 

of {C} is in tab.15 and its successions and subgroups in tab.16. The group {C} was divided into two subgroups: {C1} = {6, 8, 14} and {C2} 

= {3,7}. 

Here holds again condition (4), however adjusted, r (X1, X2) < rij 
(max)

; X ≡ {A, B, C}. The correlation coefficients are all negative, 

see tab.17, however, maximal values of tables are all positive; see tabs. 11, 13 and 15. Therefore adjusted condition is valid. Relations 

between subgroups inside each group must be evaluated by the degree of correlation. Here are formulas used for r (X1, X2), where holds X 

≡ {A, B, C}: 

  .
4

1
),( 12,132,1312,12,121 rrrrAAr    (9)  

 .
6

1
),( 11,109,1011,59,511,49,421 rrrrrrBBr    (10) 
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 .
6

1
),( 7,143,147,83,87,63,621 rrrrrrCCr    (11) 

The values of these coefficients are in tab.17. This says that )A,A(r 21 = -0.816 and is classified like high, whereas, both resting coefficients 

)B,B(r 21 = -0.692 and )C,C(r 21 = -0.594 are significant only. But, in general, we can announce that relations between subgroups are much 

tighter than it is between groups. What is also interesting is all relations between subgroups are negative. Imagination of relations among 

the depth points can be made with the help of the map of relations.  

 

 

 

5.2 Results and discussion 
 Results of mapping are presented in fig.2. Relations between the depth points inside of subgroups, tab.2, are very high, high, or 

significant. They are positive; the only exception is negative relation between points 8 and 14. However, the subgroup {C1} is a bit out of 

the picture of subgroups as we shall see later. 

The graphic output of subgroups is presented by figures 3, 4, 5. For their construction you need to have the table of fundamental data 

presenting changes of the registered characteristics with the borehole depth. It is tab.1; more in RYŠAVÝ, (2023). As the characteristics 

have various units, the data has been calculated for comparison expressed in percentage. It is presented in tab.18. This table then serves as 

the basic one for the stripe plots of subgroups depicted as fig.3, fig.4 and fig.5. 

Differences between subgroups are well visible for {A1} and {A2}. There holds the rule: the more, the less. Subgroup {A1} has high 

ε, low R and χ is low too. In contrary, subgroup {A2} has low ε, but R and χ are high. It explains well negative relation between {A1} and 

{A2}. 

Significant relation is visible between subgroups {B1} and {B2}. The degree of correlation between {C1} and {C2} is too classified 

like significant, but absolute value of - 0.594 is the lower. Interesting is subgroup {C2} with two depths´ points, 3 and 7. Both have 

characteristic σ = 0, and then the point 7 has ρ = 0 too. Algorithm formed from them subgroup {C2} because they are two. In contrary the 

depths´ point 1 has also σ = 0, but an own subgroup has not, because is single. It is possible that for two such points inside of group A we 

would have next special subgroup too. It seems that in subgroup {C2}is a tendency to grouping depths’ points having figure “0”. 
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Tab.12  The denoted successions and 

              subgroups {A1} and  {A2} for 

              the depth points 

Succession Group 

1,13   A1 = { 1,13 } 

2,12   A2 = { 2,12 } 

12,2   

13,1   
 

 

    Tab.11  The correlation matrix of group {A} valid for 

                  the depth points 

  1 2 12 13 

 1 1 -0.854 -0.860 0.885 

|| A || = 2 -0.854 1 0.548 -0.991 

 12 -0.860 0.548 1 -0.559 

 13 0.885 -0.991 -0.559 1 

 

 
   Tab.13  The correlation matrix of group {B} valid for the depth 

                 points 

  4 5 9 10 11 

 4 1 0.931 -0.739 0.907 -0.714 

 5 0.931 1 -0.503 0.861 -0.562 

|| B || = 9 -0.739 -0.503 1 -0.814 0.752 

 10 0.907 0.861 -0.814 1 -0.818 

 11 -0.714 -0.562 0.752 -0.818 1 

 

Tab.14  The  denoted   successions   and 

              subgroups {B1} and {B2} for the 

              depth points 

Succession Group 

4,5,10   B1 = { 4,5,10 } 

5,4   B2 = { 9,11 } 

9,11   

10,   

11,9   

 

   Tab.15  The correlation matrix of group {C} valid for the depth 

                 points 

  3 6 7 8 14 

 3 1 -0.846 0.522 0.051 -0.996 

 6 -0.846 1 -0.830 0.430 0.836 

 || C || = 7 0.522 -0.830 1 -0.441 -0.501 

 8 0.051 0.430 -0.441 1 -0.072 

 14 -0.996 0.836 -0.501 -0.072 1 
 

A = 

B = 

C = 

 

   Tab.16  The denoted  successions and 

              subgroups C1} and {C2} for the 

              depth points 

Succession Group 

3,7   C1 = { 6,8,14 }  

6,8,14   C2 = { 3,7 }  

7,3   

8,   

14,6   

Tab.16 The denoted successions and 

            subgroups {C1} and {C2} for 

            the depth points 
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Tab.18 The input characteristics as data 

            of well logs depicted in percentage             

i 
R  χ σ ρ  ε  

[%] [%] [%] [%] [%] 

1 2.2 3.7 0.0 6.3 12.2 

2 7.1 5.9 1.2 1.8 3.2 

3 0.9 10.4 0.0 0.7 3.1 

4 2.9 11.8 0.7 3.8 7.5 

5 6.0 11.1 2.3 7.6 7.5 

6 13.7 4.1 39.5 21.7 13.9 

7 10.8 9.6 0.0 0.0 5.4 

8 6.3 8.1 39.3 10.2 9.0 

9 9.0 4.3 3.7 8.9 3.3 

10 2.8 11.0 1.2 6.8 9.3 

11 20.1 3.0 1.5 8.1 4.9 

12 6.8 9.6 7.5 7.7 4.4 

13 3.0 5.9 2.0 8.2 9.0 

14 8.3 1.5 1.2 8.2 7.3 

Sum 100.0 100.0 100.0 100.0 100.0 
 Fig.2 The map of relations between the depth points 

 

 

r(A1,A2)  -0.816 Tab.17  The table of correlation coefficients 

               r (A1, A2), r (B1, B2) and r (C1, C2) 

 
r(B1,B2) -0.692 

r(C1,C2) -0.594 
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Relations between groups {A}, {B}and {C} are extremely low, fig.2. Formations of all three 

groups could be either massive ores and mafic rocks, or dielectric rocks as classified the analysis of 

virtual characteristics. With the help of the map of correlation and measured characteristics we can 

make the classification of subgroups as the types of formations. It is made in tab.19. The formations 

complete the depth points into groups of equivalent properties. I accent; this is classification made 

strictly after virtual physical characteristics. However, these types of rocks are only virtual, because to 

have real well-logging records was not possible. Thanks to the mentioned operation we are close to 

construction of the borehole profile only after subgroups having been interpreted. Data for the borehole 

profile you find in tab.20. There exist two sections, 1 and 2, made per the borehole depth. Section 1 is constructed with groups {A}, {B} 

and {C}and is characterized like global, while section 2 is presented with subgroups {A1}, {A2}, {B1}, {B2}, {C1}and {C2}; is more 

detailed. Both sections can be compared to the real geological one for the correct identification of the rock types interpreted. This result can 

be further used for solving geological cycles in the borehole sections. It is visible in section 1. 

 

 

Tab20 Data of borehole profile 

            sections 1 and 2 

 

 

Tab.19  Interpreted subgroups of rocks after the depth points 

 Interpretation of groups 

A1 
Rock being high electrically polarized and conductive, weak 

radioactive and weak magnetic with higher density 

A2 
Rock being weak electrically polarized and non-conductive, having 

variable radioactivity and magnetic susceptibility, with low density 

B1 
Rock being high electrically polarized and conductive, weak 

radioactive and high magnetic, having variable density 

B2 
Rock being weak electrically polarized and non-conductive, weak 

radioactive and magnetic with high density  

C1 
Rock being high electrically polarized , weak magnetic, having high 

variable radioactivity, high density and having variable conductivity 

C2 
Rock being weak electrically polarized, non-radioactive, high 

magnetic, having low density and variable conductivity 



 
 

- 15 - 

   
Fig.3 The stripe plot of group A Fig.4 The stripe plot of group B Fig.5 The stripe plot of group C 

6 Conclusion 

On the base of this analysis, I came to the following conclusions: 

 Heuristic algorithm “Class,” published by SIROTINSKAYA, (1986), is well-applied for classification of the registered characteristics as 

function of the borehole depth into groups. 

 The same algorithm is well-usable for numeric values of this paper. It can be used not only for boreholes, but for the surface geophysical 

profiles, as well. It only must exchange the column of depth for the column of profile length. 

 Algorithm uses numeric data for mathematical grouping of maximal values of the correlation coefficients in rows of the correlation 

matrix.  

 Two correlation matrices are studied. Input data are presented with the help of the correlation matrices constructed after the 

characteristics and after the depth points. 

 Groups present the types of formations characterized by their physical properties: R, χ, σ, ρ, ε. 
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 As the input table of data, Tab.1, is identical to the input table of data in the work RYŠAVÝ, (2023). So, you can gain next added 

information about examined borehole. 
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