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Abstract 

This paper presents a guidebook on how to apply a method of the Principal Component Analysis on well-logging statistical sets. The 

algorithm of the problem is based on principles of the Matrix Calculus respected with all spreadsheets. It is about the method of Principal 

Component Analysis presenting a closed system of linear equations. For calculation, you can use processor Microsoft Excel and its 

implements for the solution of equations. Both ways of analysis you can solve there; both after characteristics and after the points of depth. 

Each of the variants yields different information. The main is analysis after characteristics which can depict the interpreted factors in form of 

continuous curves being like classical ones of deterministic models. However, the curves of the stochastic model we have grasp like curves 

of probability for the type of rock/suspense. The analysis after the points of depth is then next information about relations between 

characteristics; it is, however, important for well geological identification of factors.  

Abstrakt 

Tato práce je jakýmsi odborným návodem, jak aplikovat metodu komponentní analýzy na statistické soubory karotážních dat. 

Algoritmus úlohy je založen na principech maticového počtu, které respektují všechny tabulkové procesory. Jedná se o metodu hlavních 

komponent, která představuje uzavřený systém lineárních rovnic. Pro výpočet byl použit procesor Microsoft Excel a jeho aplikace pro řešení 

rovnic. Lze řešit oba způsoby analýzy, jak podle registrovaných charakteristik, tak podle hloubkových bodů. Každá z variant poskytuje různé 

informace. Hlavní je analýza podle charakteristik, která zobrazuje interpretované faktory formou spojitých křivek, které se podobají 

klasickým křivkám deterministických modelů. Avšak křivky stochastického modelu musíme spíše chápat jako pravděpodobnostní křivky pro 

předpokládaný typ horniny/látky. Analýza podle hloubkových bodů je potom dodatečnou informací o vztazích mezi charakteristikami; to je 

ale velmi důležité pro správnou geologickou identifikaci faktorů. 
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1. Introduction – comparison between Factor and Component Analyses 
Factor Analysis and Principal Component Analysis are both the statistical methods determined for interpreting multidimensional sets. 

In lot of cases, they are similar, however, in other things are different. Factor Analysis explains the dispersion of the studied variables with 

the help of a lower number of latent variables denoted as factors. We measure something that is not measurable directly. Factor Analysis 

began used at first in Social Sciences in psychology. Later it was enlarged too in sociology, economy and too in Nature Sciences. That holds 

for the world round the Czech Republic. It is surprising, that in the Czech Republic it was a bit later. Majority works was in biology. An 

analogous situation was for Principal Component Analysis. I was interested in what is situation in Czech geophysics, especially in Well-

Logging. However, when I tracked back works in professional geophysical and geological journals in the Czech Republic, I was not 

successful. Nevertheless, an expansion of new measuring methods and the discovery of Artificial Intelligence present wide possibilities for 

new ways interpreting of well-logging data in geophysics. 

There exist two main orientations of Factor Analysis; they are Explorative Factor Analysis denoted as EFA and Confirmatory Factor 

Analysis denoted as CFA. Explorative Factor Analysis tends to find the latent factors which are just for geological prospection important. In 

contrary Confirmatory Factor, Analysis studies put certain restrictions on items of linear systems of equations. Geological prospection is  

a very suitable method for EFA. 

Explorative Factor Analysis describes every studied variable as a linear combination of influence factors through matrix operations. It 

is either the correlation matrix or the covariance matrix. The number of input factors can be various; however, the sense of analysis is to find 

the number of acceptable factors as low as possible. This aim is close to Component Analysis, but both methods have a different system of 

linear equations. 

Method of Principal Component Analysis denoted as PCA studies too latent variables of higher level denoted as factors. However, the 

system of linear equations is a bit different in comparison to the system equations for Explorative Factor Analysis. Nevertheless, the large 

similarity of both equation systems tends in older literature to the contention that Principal Component Analysis belongs to Factor Analysis 

in sensu extenso. On the contrary younger authors, classify Principal Component Analysis as independent.  

The method of PCA tends to reduce the number of the input variables in a way to have as well as possible explained dispersion of input 

variables. Factor Analysis tends to an explanation of correlation input variables. Method PCA has an advantage that offers clearly defined 

factor solution. Just this is why the method belongs among those favoured. Opponents of the method dispute that the before method PCA is 

not the one that best explains correlations between factors. Methods PCA and EFA and the comparison between them you find in the literature 
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DMITRIEV, et al. (1982), MELOUN, MILITKÝ (2004) and (2012), FABRIGAR (2012), FINCH (2019), JOLLIFFE (2002) and MA. Y. 

(2015). As for Well-Logging published papers, significant and important works are the works of NICULESCU, B.M., ANDREI, G., and 

CIUPERCĂ, C.L. (2016) and NICULESCU, B.M., ANDREI, G. (2016) for gas boreholes in Romania. PCA serves to expansion added 

information from the boreholes results gotten through standard interpretation Well Logs. Method PCA offers comparison its results with core 

analyses, production tests and mud low gravity solids. Both papers follow rife figures Well Logs common with PCA Logs. More in detail in 

the mentioned papers. 

Principle Component Analysis and Factor Analysis present a highly effective ways of statistical data evaluation. It is strange enough 

that such analyses were not yet imply in the Czech Republic for Well-Logging, even if well-logging data present large statistic sets reflecting 

relations between various physical characteristics and the borehole depth. In comparison to the deterministic models, where all relations are 

defined; the characteristic and its relations, the stochastic models offer a probable relationship of factors to the borehole depth. These factors 

can copy certain the deterministic curves as total porosity, shaliness or the next ones, but they can have completely different courses as well. 

The stochastic models use probability and interpretation of results; it depends on the well geological experience of one who such interpretation 

makes. A certain indeterminateness of such models – can be the reason there exists misgiving to methods of factor analysis. Simply speaking, 

the stochastic models are not definite. However, they have their advantage too; they are making it possible to interpret in cased boreholes the 

curves closed to deterministic ones as total porosity or shaliness are. 

I should like to say in advance, the crucial problem of interpretation is always the identification of factors. Not always all factors 

intelligibly you can identify; it is not a rare case that although factors have defined relations to every depth point, nevertheless, they have no 

geological identification. It needs to say that geological identification of factors presents a big problem; despite that a new possibility how to 

get quite current information, is attractive. 

 

2. Model´s equations of Explorative Factor Analysis and Principal Component Analysis 
It is about two models. The first is the model of method EFA; the second is model of method PCA. The first model is the open one. 

Such enables us to reach more variants of solutions. An interpreter separates the final variant. The opened model we denote as multivariable.  

It is possible to describe that by formula representing the system of equations: 
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where aij = the weight of j-th vector of directional cosine for the i-th characteristic Xi, 

        Yj = the j-th vector of cosine, 

     ei = the resting term of errors depending on Xi, and  

   Xi = the random i-th characteristic Xi. 
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The model, opened, makes it possible to get lower number of factors from n to m very rapidly and in every case. 

The model of PCA is a closed one. Such a model yields an unambiguous solution on the condition that the scales of characteristics are 

fix. The registered characteristics you must standardize to get dimensionless data. The above model you can record as a system of equations: 
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The mentioned model uses all original factors; any of them, you cannot exclude in advance, as latent, m = n. However, the number of 

latent factors is more likely lower, m < n. Method of PCA has no error term, ei, which gives bigger freedom to the system; this is why the 

opened one is. 

In the geometric sense, it is the transformation of the n-dimensional ellipsoid from the original system of coordinates into the new 

orthogonal system of coordinates. The new orthogonal system can be again the n-dimensional, however, very often has a lower dimension 

and we receive so the m-dimensional one. The axes of such ellipsoid we characterize by vectors of directional cosines ai and just these form 

the matrix of terms denoted as aij. Their handheld calculation would be sure difficult, however, in the age of computers and matrix calculus 

it is not any problem. 

 

3. Principal Component Analysis 
I should say why I preferred Component Analysis to Factor Analysis in sensu stricto. I studied Russian works, namely,  

BELONIN et al. (1982) and AJVAZJAN et al. (1981). I must state this method is more frequently used in geophysics for the unambiguous 

solutions. However, the registered characteristics need standardisation. The mentioned work BELONIN et al. (1982) I selected like the 

methodical guide on how to apply method PCA on sets of well-logging data.  

I needed to have well-logging data. Such data I did not have any. However, just in the mentioned work BELONIN et al. (1982) there 

were tables of the evaluated data yet. They were the table of input data of surface samples {14×5} and the tables of calculated vectors of the 

directional cosines. Therefore, I kept the numeric data of the input table; however, I changed the registered characteristics. For example, 

I replaced the thickness of the Jurassic cover with the mass activity of radionuclide [μBq/g] and the plain of deposit by resistivity in [Ωm] 

and made the next changes. For all 14 points of observations, I added the depth of the borehole as it is usual for well-logging sets. 

The next problem I had for the counting software Excel 2007 through I wanted to check whether algorithm PCA is suitable for Well 

Log Analysis and following geological interpretation. This software is now outdated yet but ten years ago it was not. The software was not, 

of course, satisfactory for large data sets. I supposed that software is always only an instrument for testing suitability and whether algorithm 

is acceptable for Well Log Analysis and following geological interpretation. And that is possible to reach that too in the conditions you have 

less ideal software and small data sets. If you reach expected destination, you could expect that the same will be valid too for large data sets 

evaluated by more perfect software such as MATLAB or PYTHON. 
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All adjustments made me possible to absolve all processes of calculation and to compare the output numeric data with those of 

BELONIN et al. (1982). I tried to have the input numeric data in coincidence with the usual well-logging characteristics. The final 

interpretation of factors can seem to someone like a bit sophisticated geological surroundings; nevertheless, important, is to see how the 

method to apply on larger well-logging sets. And if this paper did that, you achieved aim. Information about matrix calculation I had drawn 

from SIGORSKIJ (1975) and REKTORYS (1968). 

 

4. Evaluation of input data 
As the well-logging sets are large, it is possible to suppose that they follow a normal distribution. However, the input characteristics 

need standardization in dimensionless units. What is important is the matrix of correlation of these units is identical to the matrix of correlation 

for dimensional characteristics. Tab. 1 presents input data of statistical sets. There are five physical characteristics registered like a function 

of the borehole depth. The first column is resistivity in [Ωm], the second one is magnetic susceptibility in [SI] and the third one can present 

either the mass activity of radionuclide in [μBq/g] or the apparent specific activity of rocks in [μg 238U-eq/t]. The fourth informs about the 

bulk density of rocks in [g/cm3] and, finally, the fifth is the apparent electric susceptibility that is dimensionless. In this table, there are too 

the means of all characteristics and their standard deviations. 

The mean is denoted as x  and the standard deviation as s. The formula of standardization is following: 
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Results of standardization you will find out in Tab. 2. The standardized set presents input data for the matrix of correlation. Tab. 2 

presents the field of matrix X*. Dimensions of this matrix are {14×5}. Besides that, we need to have the transposed matrix denoted as X*T. 

Its dimensions are {5×14}. It is because we have two various matrices of correlation. The first is the correlation matrix of characteristics 

denoted as R1 and the second is the correlation matrix of the depth points as R2. The matrix R1 has dimensions {5×5}, while, the matrix R2 

has bigger dimensions {14×14}. In this case, I must note that for digital registration 10 points/m of depth, if we register an interval of 500 m 

of the borehole depth, we shall receive 5000 of the depth points. That means that matrix R2 will be extraordinarily large; its dimensions would 

be {5000×5000}. 

The correlation matrix R with the help of the covariance matrix denoted as K1:  
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where n = 14; i.e., the number of objects (the depth points). 
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The matrix of correlation of the depth points, which you denote as R2, you can define by the formula for the covariance matrix denoted 

as K2: 
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where n = 14, i.e., number of the depth points. 

The terms of both covariance matrices are symmetric after the main diagonal. It holds that Kij = Kji. Transformation of terms in the 

covariance matrix on terms belonging to the correlation matrix realized with the help of relation: 
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Both correlation matrices have all terms in the main diagonal equal to 1. The transformation from the covariance matrix to the 

correlation matrix you do due to the computer. All analyses you can make with the help of the table processor Microsoft Excel. The correlation 

matrix R1 is in Tab. 3, while, in Tab.  4 there is the correlation matrix R2. Both matrices you will receive due to succession  

Implements → Data Analysis → Correlation. For matrix R1 you must denote “columns” and for matrix R2 “rows “. 

 

5. Analysis after characteristics 
This is the analysis of the matrix R1. For simplification, we will use identity R = R1. Owing to the mentioned matrix we can define the 

characteristic matrix F (λj). The formula in general form for that is the following: 

( ) ,j j = − F R I   (7)  

where   I = the unit matrix, and 

             λj = the root of the characteristic equation. 

The matrix F (λj) you can record by terms (1 – λj) in the main diagonal. All resting terms are the same as it is in the correlation matrix 

R1. The determinant of the characteristic matrix is polynomial; because matrix F (λj) has dimension {5×5} as matrix R1 is, we obtain the 

polynomial of the fifth degree. So, if we lay the condition that the determinant equals zero, we shall get an equation of the fifth degree. You 

must find different roots of the characteristic equation λ1, λ2… λ5. All roots are real and after substitution into the characteristic matrix, you 

receive five matrices F (λ1), F (λ2) ... F (λ5). In mathematical processes, I followed AJVAZJAN et al. (1981). 

For a real solution, we use again Microsoft Excel. The first step is I must select a cell and into its content, I put the number 5. This cell 

after calculation will offer the value of the roots λj. The number 5 is not select at random. It is by the condition of solutions: 
5
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 where  Tr R1 = trace of the correlation matrix, i.e., the sum of all roots λj.  
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Condition (8) is all clear; n = 5. Tr R1 presents the upper limit of values for the roots, because λj < Tr R1. Any of the roots are not higher 

than number 5. The second step is forming the field of the characteristic matrix. All terms of the main diagonal will be (1 – λj); starting 

position is λj = 5. If the calculation finishes, we shall obtain the field of matrices F (λ1), F (λ2) ... F (λ5). We begin with the creation of the 

characteristic matrix F (λj). It means to form the before field like the matrix. And we select, too, the next cell which will be the determinant 

of the characteristic matrix. As the starting value of λj = 5, we get the input value of the determinant equals 5, too. Now, we must use 

succession Implements → Finding Solution. The activated cell is the cell of determinant. The aim value is zero. The changing cell is the 

cell having λj = 5. The result will be that λ1= 2.567. 

 

   

Tab. 1 The input characteristics as a function of depth 

i h [m] R [Ωm] χ×106[SI] σ[μBq/g] ρ[g/cm3] ε 

1 350 22.06 50 0 2.5 5.7 

2 350.5 70 80 1.5 0.7 1.5 

3 351 9.08 140 0 0.28 1.46 

4 351.5 28.9 160 0.9 1.5 3.5 

5 352 59.6 150 3 3 3.53 

6 352.5 136 55 50.7 8.58 6.52 

7 353 107.27 130 0 0 2.55 

8 353.5 63 110 50.4 4.04 4.24 

9 354 89.25 58 4.7 3.54 1.57 

10 354.5 27.63 148 1.5 2.68 4.37 

11 355 200 40 1.9 3.2 2.3 

12 355.5 68 130 9.6 3.06 2.05 

13 356 30 80 2.5 3.25 4.2 

14 356.5 81.95 20 1.5 3.25 3.42 

x  70.91 96.5 9.16 2.83 3.35 

s 49.57 45.37 17.07 2.01 1.51 

Tab. 2 The standardized characteristics depicted as X*  

           as a field both the depth and characteristics 
 

i h [m] R  χ×106 σ ρ ε 

1 350 -0.9855 -1.0248 -0.5366 -0.1628 1.5592 

2 350.5 -0.0184 -0.3637 -0.4487 -1.0584 -1.2283 

3 351 -1.2473 0.9587 -0.5366 -1.2674 -1.2549 

4 351.5 -0.8475 1.3995 -0.4838 -0.6603 0.0991 

5 352 -0.2282 1.1791 -0.3608 0.0860 0.1190 

6 352.5 1.3131 -0.9146 2.4343 2.8624 2.1035 

7 353 0.7335 0.7383 -0.5366 -1.4067 -0.5314 

8 353.5 -0.1596 0.2975 2.4167 0.6035 0.5902 

9 354 0.3700 -0.8485 -0.2612 0.3547 -1.1819 

10 354.5 -0.8731 1.1350 -0.4487 -0.0732 0.6765 

11 355 2.6041 -1.2452 -0.4252 0.1855 -0.6974 

12 355.5 -0.0587 0.7383 0.0260 0.1159 -0.8633 

13 356 -0.8253 -0.3637 -0.3901 0.2104 0.5637 

14 356.5 0.2227 -1.6860 -0.4487 0.2104 0.0460 
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The next roots you will find with the help of consecutive division. The determinant you divide by the difference in the cell  

content (λj–λ1). Then we adjust again the starting value for λj = 5. We call Finding Solution and here is the second root λ2 = 1.314. The 

content of the cell, where the determinant divided by (λj - λ1) is, you must divide by (λj – λ2); starting condition is again λj = 5. All process is 

cyclically repeated. The next roots are λ3 = 0.674, λ4 = 0.290 and, finally, λ5 = 0.156. We must do successive sums of roots until the condition 

(8) is filled. It holds that (2.567+1.314+0.674+0.290+0.156) = 5.001. The solution can have only real roots! 

The used implements of Microsoft Excel work in way of finding iterations. Therefore, the solution can have only real roots. If there 

are complex roots, the implement will announce – no solution found. Fortunately, the roots of the characteristic equation are always real. For 

each of roots, we reach the single matrix. The matrices F (λ1), F (λ2) ...F (λ5) you need for the process of orthogonalization. We must 

orthogonalize vectors of the modal matrix a. This is the next crucial step. 

Here are the conditions for orthogonalization: 

( ) 0,andj  =jF a   (9) 

.1
1

2 =
=

n
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jia   (10) 

We use again processor Microsoft Excel. The first is to form the matrix from the field of a matrix. We shall get matrix F (λj) = F (λ1) 

having dimensions {5×5}. The next is to form the field of matrix/vector aj = a1. As n = 5 we have 5 cells and the content of each of them will 

be equal to 1. The values equal to 1 are the starting ones. 

Further, we create the column matrix aj; j = 1, 2, 5. Its dimensions are {5×1}. Multiplication of two matrices after condition (9),  

{5×5} × {5×1} ≡ {5×1}, presents the matrix having dimensions {5×1}. It is still to form the cell where will be the second condition of 

orthogonalization there, i.e., condition (10). As the starting values of all cells for matrix aj are 1, the content of the cell will be value 5. 

Now, we use succession Implements → Solutionist. We must activate an arbitrary cell of matrix F (λj) × aj. It is usually the first cell. 

The value of this cell must be zero. The changing cells are the cells of the field of matrix aj. Attention, they are denoted and detached by  

a semi-colon. Now, I shall fill limiting conditions. Here they are:  

.0aaaaa1,a 5141312111

5
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2

ji ======
=

  

The conditions you can express like cells. What is important is that condition a11 = 0, doubles the condition that the activated cell is 

zero. However, the computer finds ways how to minimalize the numeric content of all cells and therefore can select the cell which is best for 

that. It is time to adjust the parameters of The Solutionist. We press the button Possibilities. Precision will be lower, 1E-03. Maximal Time 

and Iterations can be higher. Tolerance will be 1%. Extrapolation is Quadratic because the model is nonlinear. The Derivation is Correct, 

and the Method is Associated. Then Solutionist announces that found the solution. It is convenient to have the cells of the matrix F (λj) × aj 

together with the cell of condition (10) adjusted on three decimal places. I would remark that in case of higher Precision calculation will be 

more correct, but Solutionist will announce - no solution found out.  
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Tab. 3 The correlation matrix characteristics denoted as R1 

 R [Ωm] χ×106[SI] σ[μBq/g] ρ[g/cm3] Ε 

R [Ωm] 1 -0.501 0.252 0.391 -0.074 

χ×106[SI] -0.501 1 -0.118 -0.423 -0.178 

σ[μBq/g] 0.252 -0.118 1 0.743 0.512 

ρ[g/cm3] 0.391 -0.423 0.743 1 0.653 

ε  -0.074 -0.178 0.512 0.653 1 
             

 

Tab. 4   The correlation matrix of denoted the depth points denoted as R2 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1 -0.854 -0.486 -0.049 -0.169 0.464 -0.514 0.058 -0.544 0.317 -0.327 -0.860 0.885 0.412 

2 -0.854 1 0.366 -0.004 -0.003 -0.508 0.789 -0.109 0.367 -0.417 0.502 0.548 -0.991 -0.308 

3 -0.486 0.366 1 0.869 0.808 -0.846 0.522 0.051 -0.427 0.616 -0.570 0.762 -0.296 -0.996 

4 -0.049 -0.004 0.869 1 0.931 -0.824 0.430 -0.165 -0.739 0.907 -0.714 0.435 0.109 -0.898 

5 -0.169 -0.003 0.808 0.931 1 -0.828 0.389 -0.403 -0.503 0.861 -0.562 0.569 0.086 -0.815 

6 0.464 -0.508 -0.846 -0.824 -0.828 1 -0.830 0.430 0.382 -0.554 0.215 -0.617 0.410 0.836 

7 -0.514 0.789 0.522 0.430 0.389 -0.830 1 -0.441 -0.154 0.088 0.254 0.366 -0.701 -0.501 

8 0.058 -0.109 0.051 -0.165 -0.403 0.430 -0.441 1 -0.092 -0.176 -0.412 -0.052 0.067 -0.072 

9 -0.544 0.367 -0.427 -0.739 -0.503 0.382 -0.154 -0.092 1 -0.814 0.752 0.246 -0.483 0.503 

10 0.317 -0.417 0.616 0.907 0.861 -0.554 0.088 -0.176 -0.814 1 -0.818 0.154 0.511 -0.665 

11 -0.327 0.502 -0.570 -0.714 -0.562 0.215 0.254 -0.412 0.752 -0.818 1 -0.133 -0.553 0.625 

12 -0.860 0.548 0.762 0.435 0.569 -0.617 0.366 -0.052 0.246 0.154 -0.133 1 -0.559 -0.705 

13 0.885 -0.991 -0.296 0.109 0.086 0.410 -0.701 0.067 -0.483 0.511 -0.553 -0.559 1 0.232 

14 0.412 -0.308 -0.996 -0.898 -0.815 0.836 -0.501 -0.072 0.503 -0.665 0.625 -0.705 0.232 1 
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The results for root λ1 you copy like the column of vector a1. We active again the starting values for aj and the cell of condition (10) 

will be again 5. The field of matrix F (λ2) copies into matrix F (λj). And all process repeats periodically. So, we obtain vectors a1, a2 … a5. 

These vectors form the field of the modal matrix a. The above matrix has dimensions {5×5} and has characteristic properties: the sum of 

squared terms each row and each column, too, equals 1. I can obtain 5 factors; it holds that m = n = 5. However, what is important is which 

of the factors is more significant and which is less significant. About that there exists a criterion of weights. The field of the modal matrix 

a is in Tab. 5. 

With the help of matrix, a, we can express all field of the matrix of directional cosines denoted as ω having dimensions {5×5}. We use 

the formula as follows: 

. jjiji a =   (11) 

It means all columns ai1 you must multiply by λ1 , the columns ai2 by λ2  … You will get in this way the directional cosines ω1, ω2, ω3, ω4 

and ω5. They are dependent on the characteristics registered. There exist two important conditions. 

For rows, it holds that, 
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Tab. 6   The matrix of the directional cosines ω after 

            characteristics 
 

 ω1 ω2 ω3 ω4 ω5  

R [Ωm] 0.508 -0.733 0.339 0.291 0.071 1.00 

χ ×106[SI] -0.555 0.617 0.507 0.232 -0.065 1.00 

σ[μBq/g] 0.796 0.307 0.413 -0.270 0.165 1.00 

ρ [g/cm3] 0.942 0.104 0.033 0.003 -0.317 1.00 

ε  0.692 0.539 -0.361 0.280 0.137 1.00 

λj 2.567 1.314 0.674 0.290 0.156 5.00 

w [ %]  51.3 26.3 13.5 5.8 3.1 100.0 
 

 

 

Tab. 5 The modal matrix of multidimensional  

            vectors ai after characteristics 
 

a1 a2 a3 a4 a5  

0.317 -0.640 0.413 0.540 0.180 1.0 

-0.347 0.538 0.618 0.432 -0.164 1.0 

0.497 0.268 0.503 -0.501 0.419 1.0 

0.588 0.091 0.040 0.006 -0.803 1.0 

0.432 0.471 -0.440 0.521 0.348 1.0 

1.00 1.00 1.00 1.00 1.00  
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For columns, it holds that, 

.
5

1

2
 j

j
ji =

=

  (13) 

The common sum of both above sums must be Tr R1 = 5. The field of matrix ω is in Tab. 6. There are, too, the roots of the characteristic 

equation λ1, λ2… λ5. They are aligned from the highest, λ1, to the lowest λ5. And each of them has its weight. The weight is denoted as symbol 

w and defined like this: 

.
5

1


=

=j
j

j
w




  (14) 

The weight records in percentage. The weight decides which factors can be statistically more significant or less significant. We 

successively sum weights of factors towards λ5. If the sum is in 95%, it will be crucial. Tab. 6 informs us that factors ω1, ω2, ω3 and ω4 belong 

to more significant, while factor ω5 less significant. The first four are in bold black type, while the second one in bold brown type. 

It is still to decide the precision of calculation for directional cosines. The fundament of that is matrix ω. However, we need to have 

the transpose matrix ω T, as well. Both matrices will form two new matrices. The first is the correlation matrix R1. 

     ,for dimensions holds: 5 5 5 5 .5 5     =  1

T

1
RωR ω     (15) 

The second is the fundamental matrix Λ depicted the roots of the characteristic equation. 

     , for dimensions holds: 5 5 5 5 5 5 .  =  
T

Λ ω ω Λ   (16) 

Now, we must adjust number of decimal places per the following conditions. For the correlation matrix, it holds that all terms of the 

main diagonal must be equal to 1. The fundamental matrix declares that the terms of the main diagonal are the roots of the characteristic 

equation; all resting terms must be zero, exactly. It holds again that Tr R1 = (2.57+1.31+0.67+0.29+0.16) = 5. Both matrices are in Tab. 7 and 

Tab. 8. It is distinct that the precision of roots and the directional cosines are 1E-02, as well. The third decimal place is burden by error yet! 

 

6. Interpretation after characteristics 
From the point of geometry, we have a 5-dimensional ellipsoid having five vectors - axes F1, F2, F3, F4 and F5. Each of these has five 

coordinates - characteristics: R, χ × 106, σ, ρ and ε. They present numerically by directional cosines. These present coefficients of correlation 

between input data X* and output data Y. Calculation between X* and Y realized like the matrix multiplication as follows: 
*

.= ωY X   (17) 

  



 

 

- 70 - 

 

 

 

 

 

 

 

 

 

 

  

Because matrix X* has dimensions {14×5} and matrix ω 

presents dimensions {5×5} the final matrix Y has dimensions 

{14×5}. It means we reach values of factors F1, F2 … F5 like the 

functions of the borehole depth. Geometrically, it is about  

a 5-dimensional ellipsoid having 5 vector axes and every axis has  

14 coordinates – the depth points. The tabled values you can depict 

in form of continuous curves with the borehole depth. That depiction 

is close to the depiction of continuous well-logging curves, and it is 

very acceptable for interpretation. Even if such curves can 

remember, for instance, the curve of total porosity, we must keep in 

mind that the curves of stochastic models report relations between 

the registered characteristics and depth. And a small remark yet. The 

matrix denoted as Y form five vectors with 14 coordinates of the 

depth points. If we had matrix X* with dimensions {5000×5}, the 

mentioned factors should have 5000 depth coordinates. 

In Tab. 9 the field of matrix Y the field of matrix Y depicts by 

form of vector columns. This is the starting table for the depiction of 

continuous curves of factors F1, F2 … F5 being in Fig. 1.  

Tab. 7 The correlation matrix after cosines ω denoted as 

           R1 as multiplication of matrices ω×ωT 
 

  1 -0.50 0.25 0.39 -0.07 

  -0.50 1 -0.12 -0.42 -0.18 

            R1 = ω ×ω T = 0.25 -0.12 1 0.74 0.51 

  0.39 -0.42 0.74 1 0.65 

  -0.07 -0.18 0.51 0.65 1 
 

Tab. 8 The fundamental matrix after cosines ω deno- 

ted as Λ as multiplication of matrices ωT×ω  
 

  2.57 0 0 0 0 

  0 1.31 0 0 0 

             Λ = ω T × ω = 0 0 0.67 0 0 

  0 0 0 0.29 0 

  0 0 0 0 0.16 
 

Tab. 9 Factors of characteristics as a function of the borehole depth 

h [m] F1 F2 F3 F4 F5 

350 0.22 0.57 -2.44 0.20 1.11 

350.5 -0.78 -0.85 0.05 -1.09 0.74 

351 -1.42 0.40 0.38 -1.21 -0.06 

351.5 -0.84 1.00 0.25 0.81 -0.05 

352 -0.35 0.65 0.49 1.17 -1.05 

352.5 2.83 0.50 0.48 0.38 -0.41 

353 -0.84 -0.52 0.81 1.30 1.85 

353.5 1.03 1.08 1.34 -1.59 1.66 

354 -0.01 -1.12 0.04 -1.21 -1.52 

354.5 -0.40 1.19 -0.23 1.11 -0.60 

355 0.53 -2.41 0.49 1.34 0.26 

355.5 -0.35 0.04 1.01 -0.32 -1.30 

356 0.02 0.45 -1.22 -0.21 -0.57 

356.5 0.36 -0.98 -1.45 -0.66 -0.06 
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 Let us try to find each of the factors. This you can do with the help of matrix ω after Tab. 6. As I did have no experience with the 

process of identification, I accepted certain principles: 

• The positive sign of the directional cosines presents 

direct relation between factor and characteristic. 

• The negative sign of the directional cosines presents 

indirect relation between factor and characteristic. 

• The zero and those all being close to zero confirm that 

the registered characteristic does not influence on the 

factor. 

On the base of those principles here are the results of geological 

identification. 

• Factor F1 – non-conductive, highly polarized rock/ore 

having heavy radioactive minerals. 

• Factor F2 – conductive, highly polarized rock/ore 

having magnetic minerals. 

• Factor F3 – non-conductive rock/ore having ore 

minerals not being radioactive and magnetic. 

• Factor F4 – non-conductive rock/ore not having any ore 

minerals. 

• Factor F5 – a substance of low density. The radioactive 

and magnetic minerals are missing. 

Tab. 11  The transformed factors of characteristics as a function of the 

borehole depth 

h [m] F1
* F2

* F3
* F4

* F5
* Sum F1

*+F2
*+F3

* 

350 0.006 0.043 0.784 0.005 0.162 1.000 0.833 

350.5 0.200 0.237 0.001 0.387 0.176 1.000 0.437 

351 0.534 0.043 0.037 0.385 0.001 1.000 0.614 

351.5 0.288 0.415 0.025 0.271 0.001 1.000 0.728 

352 0.037 0.131 0.075 0.420 0.337 1.000 0.243 

352.5 0.911 0.028 0.026 0.017 0.019 1.000 0.965 

353 0.105 0.040 0.098 0.250 0.508 1.000 0.242 

353.5 0.115 0.126 0.192 0.272 0.296 1.000 0.432 

354 0.000 0.251 0.000 0.289 0.459 1.000 0.252 

354.5 0.050 0.440 0.016 0.381 0.113 1.000 0.506 

355 0.035 0.709 0.030 0.218 0.008 1.000 0.773 

355.5 0.042 0.001 0.347 0.036 0.575 1.000 0.390 

356 0.000 0.097 0.723 0.021 0.159 1.000 0.820 

356.5 0.036 0.267 0.575 0.121 0.001 1.000 0.878 

 

Tab. 10 Interpretation of factors after characteristics 

Interpretation of factors 

F1 Electrically non-conductive, highly polarized rock/ore having heavy radioactive minerals. The factor of solid substance. 

F2 Electrically conductive, highly polarized rock/ore having magnetic minerals. The factor of solid substance. 

F3 Electrically non-conductive rock/ore having ore minerals being neither magnetic nor radioactive. The factor of solid substance. 

F4 Electrically non-conductive rock/ore not having any ore minerals. The factor of solid substance. 

F5 The liquid substance of low density not having any ore minerals; nevertheless, is electrically conductive. The factor of fluid. 
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The last substance is polarizable electrically, too. It could be the formation water or mud. Factor F5 is a bit special. Because the resting 

factors form the group being significant, factor F5 belongs to the other group being insignificant. Identification of factors is in Tab. 10. Fig. 1 

offers a view of how distinct types of rock factors change with the borehole depth. However, for concrete information about the properties of 

rocks, it is not enough. Fortunately, Tab. 9 can be transformed in such a way as to resemble more curves of deterministic models. 

Now, I must something say about graphical outputs interpreted data. Generally, holds that in processing laboratory data when you have 

point data, the depicted points are link by refracted lines. Depiction of good logs has, however, continuous curves. The recorded points of the 

physical characteristic with the depth are close to one another. You can it visualize as a dotted continuous curve with the borehole depth. 

Therefore, you see on the screen a continuous analogue curve. And just such analogues curve’s physical characteristics with the borehole 

depth print out on paper as work material for Log Analysts and geologists. It is a long-term custom and in archives, there is a big amount of 

such paper records needed for comparing old and new records. It was the main reason the depicted curves of factors have a continuous form. 

Now however go to transformation calculated factors. 

 

 

 

 

 

 

 

 

We can transform each row with depth after the formula: 

.
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1

2

2



=

=



j

ji

ji

ji

Y

Y
Y   (18) 

Input data are in Tab. 9. After transformation, the sum of all terms Y ji

 in the row is 1; see Tab. 11. Tab. 11 presents the calculation 

made after formula (18); the transformed factors and their geological identification are in Tab. 12. This table says that holds: 

• F1
  - Radioactive ore/rock being electrically non-conductive. (Disseminated ore formed from radioactive minerals in the waste rock.)  

• F2
  - Magnetic ore/rock being electrically conductive. (It presents Fe, Co, Ni ores or mafic rocks as gabbro, basalts and phonolites are.) 

Tab. 12 Geological interpretation of transformed factors after characteristics 

Geological interpretation of factors 

F1
* Disseminated radioactive ore in rock; electrically non-conductive 

F2
* Compact magnetic ore or mafic rock; electrically conductive   

F3
* Disseminated nonmagnetic and nonradioactive ore in rock; electrically non-conductive   

F4
* The waste rock matrix forms of non-ore minerals; electrically non-conductive 

F5
* Water content of rock  



 

 

- 73 - 

• F3
  - Nonradioactive Nonmagnetic ore/rock being electrically non-conductive. (It can be the rock impregnated with iron pyrites grains.) 

• F4
  - The waste rock being electrically non-conductive. 

• F5
  - Water content of rock; its high values are too an indicator of shale. It is about water, which is fluid, not solid matter, therefore the 

variant. 

 

 

 

 
       Fig. 1 Factors of rocks depicted as the function of depth in form of continuous curves 
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The sum of factors F1


, F2


 and F3


 is a function and presents the bulk content of ore in the rock; together with factor F4


 they form the 

rock matrix. The remaining value of 1 presents the water content of the rock. The results of transformed factors depict in Fig. 2 and Fig. 3. 

Tab. 13 presents curves of ore content and water content of rocks for Fig. 3. What is in Fig. 3 is an independent virtual model that you can 

offer for real geological interpretation. Important is to find a plausible explanation between the model and reality. Radioactive can be potassic 

feldspars as well as uraninite; magnetic again can be basalts instead of the iron ore deposits. The Log Analyst as a geologist must be very 

watchful and highly smart. 

 

 

 
Fig. 2 The continuous curves of transformed factors closed to reservoir properties 
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Types of rocks after Tab. 12 could quite well characterize the rocks being in Czech Cretaceous Basin. Further, you can make to 

interpretation in the cased borehole. If I have enough methods available to register through steel Colonna, I shall have curves reporting water 

content, shaliness or saturation by hydrocarbons. This is for a deterministic model almost impossible. However, for that, I need to have non-

electrical logs such as the Density Log, Acoustic Log, Gamma-Ray Log and one, two or all three variants of the Neutron Log.  

Tab. 13 The continuous curves of ore 

content and water content of 

rocks with the borehole depth             

Ore Content and Water Content 

h [m] F1
*+F2

*+F3
* F5

* 

350 0.833 0.162 

350.5 0.437 0.176 

351 0.614 0.001 

351.5 0.728 0.001 

352 0.243 0.337 

352.5 0.965 0.019 

353 0.242 0.508 

353.5 0.432 0.296 

354 0.252 0.459 

354.5 0.506 0.113 

355 0.773 0.008 

355.5 0.390 0.575 

356 0.820 0.159 

356.5 0.878 0.001 
 

Fig. 3 The curves of the rock matrix, ore content and water content 

          made after Tab. 13 
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 Fig. 3 presents the curves of the ore content and water content of rocks. The ore content is the ore-component of the matrix of rocks; 

has three partial components: the radiation, the magnetic and the electric ones. The red curve belongs to the water content of rocks. The 

supplement of the curve up to value one presents the sum of both the ore-component and the non-ore-components of the matrix of rocks. This 

common sum is the total matrix of rocks. 

 

7. Analysis after depth points  
In this case, I use the correlation matrix R2 depicted in Tab. 4. This matrix has dimension {14×14} which is difference because the 

correlation matrix R1 said before to be {5×5}. The process of calculation of the roots for the characteristic equation is fully identical to that 

described in the chapter about analysis after characteristics. However, condition (8) you must adjust, because the new matrix has other 

dimensions. It holds that: 
14

1

14.j
j

Tr 
=

= =2R   (19) 

This condition presents that any of the roots of the characteristic equation cannot be equal or higher than 14, because there holds that 

λj < 14. We shall use again succession Implements → Finding Solution. The computer makes again successive divisions of determinant for 

the characteristic matrix F (λj). So, you will get the roots: λ1 = 6.655, λ2 = 4.770, λ3 = 1.626 and λ4 = 0.950. It holds that  

Tr R2 = (6.655+4.770+1.626+0.950) =14.001. Their sum per condition (19) must be 14. That means to stop the next division, even if Finding 

Solution offers the next real roots. This is the main difference in comparison to the calculation of roots having a relation to matrix R1. The 

roots are only four instead of five and simultaneously with roots; we reach four matrices F (λ1), F (λ2), F (λ3) and F (λ4). 

The process of orthogonalization is in the chapter about analysis after characteristics. In this case, the matrix F (λj) has its dimensions 

{14×14}. The column matrix/vector remarked as aj has dimensions {14×1}. And the same dimensions are valid for the multiplication of 

F (λj) × aj. It holds that F (λj) × aj ≡ {14×14} × {14×1} ≡ {14×1}. We use again succession Implements → Solutionist and conditions (9) 

and (10). You will get to the modal matrix a having dimension {14×4} as you work with 4 roots! What is characteristic of that is the sum of 

squared terms in columns is equal to1, however, the sum of squared terms in rows is extremely lower than 1. This is a difference in comparison 

to the former modal matrix because m = 4 < 14! You see it well in Tab. 14. 

If we form the matrix of directional cosines ω with the help of formula (11), we shall reach the matrix being {14×4}. And for this 

matrix there hold both conditions (12) and (13). Here is a coincidence yet. All factors F1, F2, F3 and F4 are more significant; therefore, they 

are in bold black letters. The matrix ω is in Tab. 15. Precision of calculation you control after matrix R2, see formula (15), and after matrix 

Λ, formula (16). Both matrices are in Tab. 16 and Tab. 17.  

It holds again: Tr R2 = (6.7+4.8+1.6+0.9) = 14. Precision is lower, 1E-01, and this holds both for R2 and Λ. It is distinct; the original 

14 factors you reduced to 4. Here is a well visible advantage of The Method of Principal Components. It needs to emphasize this is analysis 

after depth points not after characteristics. Therefore, we have only four factors F1, F2, F3 and F4, while analysis after characteristics presents 
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five ones: F1, F2, F3, F4 and F5. The next differences are in characterizing factors; for example, the factor of water content in Tab. 10 denoted 

as F5 and is significant, but in Tab. 19, on contrary, is as F2 and is insignificant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Interpretation after depth points 
From the point of geometry here is the 4-dimensional ellipsoid having 4 factors presenting the column vectors-axes. Each of the axes 

has 5 coordinates answering to the measured characteristics. All four factors have significant character, they are in bold black letters. 

Calculation of values of matrix Y is after the formula as follows: 

.
 =
T

X ωY    (20) 

Tab. 15 The matrix of directional cosines ω  

              after the depth points 

 ω1 ω2 ω3 ω4  

1 -0.394 -0.857 -0.270 0.202 1.0 

2 0.322 0.910 0.016 0.267 1.0 

3 0.965 0.055 0.257 0.023 1.0 

4 0.936 -0.337 -0.071 0.029 1.0 

5 0.906 -0.226 -0.184 -0.305 1.0 

6 -0.936 -0.220 0.271 -0.065 1.0 

7 0.615 0.547 -0.418 0.391 1.0 

8 -0.185 -0.181 0.894 0.367 1.0 

9 -0.502 0.714 0.127 -0.466 1.0 

10 0.713 -0.674 -0.141 -0.105 1.0 

11 -0.518 0.745 -0.413 -0.015 1.0 

12 0.681 0.485 0.353 -0.425 1.0 

13 -0.232 -0.950 -0.081 -0.198 1.0 

14 -0.966 0.034 -0.249 -0.064 1.0 

λj 6.655 4.770 1.626 0.950 14.00 

w [ %]  47.5 34.1 11.6 6.8 100.0 

 

Tab. 14   The modal matrix of multidimensional  

              vectors ai after the depth points 
 

a1 a2 a3 a4 Sum 

-0.153 -0.393 -0.212 0.207 0.265 

0.125 0.417 0.013 0.274 0.265 

0.374 0.025 0.202 0.024 0.182 

0.363 -0.154 -0.055 0.030 0.159 

0.351 -0.103 -0.145 -0.312 0.252 

-0.363 -0.101 0.212 -0.067 0.192 

0.238 0.251 -0.328 0.401 0.388 

-0.072 -0.083 0.701 0.376 0.645 

-0.195 0.327 0.100 -0.478 0.383 

0.276 -0.309 -0.110 -0.108 0.195 

-0.201 0.341 -0.324 -0.016 0.262 

0.264 0.222 0.277 -0.436 0.386 

-0.090 -0.435 -0.064 -0.203 0.243 

-0.374 0.016 -0.195 -0.066 0.183 

1.000 1.000 1.000 1.000  
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 The transpose matrix has dimensions 

{5×14} and matrix ω has {14×4}. That is why 

the matrix Y has dimensions {5×4}. The 

precision of directional cosines will be only  

1E-01. This matrix depicts the relations of four 

factors to the registered characteristics. The 

field of matrix Y is possible to find in Tab. 18. 

Further, note please too in Tab. 19, factors are 

only 4, not 5, and signature factors are other than 

it was in Tab. 10. For example, the factor of 

water content in Tab. 19 is as F2, in brown 

colour, the second most important, while in 

Tab. 10 it is as F5, the least important. 

 Now, it is a time for the geological 

identification of factors. There hold the same 

three principles as it was before. The 

classification of factors is in Tab. 19. F1 presents 

the factor of the magnetic ore minerals, while F2 

is the factor of the rock water content.  

F3 classifies the factor of the radioactive ore minerals and F4 is 

the factor of the nonmagnetic and nonradioactive ore minerals. 

So, the sum of factors F1 + F3 + F4 presents the factor of ore 

content in the rocks. You could remember that this factor and 

the factor of water content together decide sufficiently about  

a statistical set. What is interesting is that the matrix of rock is 

not present here, but it is possible to reach it to be as the 

supplement of water content. The results of Tab. 18 are in  

Fig. 4. It is like a stripe plot giving particularly valuable 

information about mutual relations. Such information is not the 

main one, however, an important other one is. 

  

Tab. 16  The correlation matrix after cosines ω denoted as R2 as multiplication of  

matrices ω ×ω T 

  1 -0.9 -0.5 -0.1 -0.2 0.5 -0.5 0.1 -0.5 0.3 -0.3 -0.9 0.9 0.4 

  -0.9 1 0.4 0.0 0.0 -0.5 0.8 -0.1 0.4 -0.4 0.5 0.6 -1.0 -0.3 

  -0.5 0.4 1 0.9 0.8 -0.8 0.5 0.0 -0.4 0.6 -0.6 0.8 -0.3 -1.0 

  -0.1 0.0 0.9 1 0.9 -0.8 0.4 -0.2 -0.7 0.9 -0.7 0.4 0.1 -0.9 

  -0.2 0.0 0.8 0.9 1 -0.8 0.4 -0.4 -0.5 0.9 -0.6 0.6 0.1 -0.8 

  0.5 -0.5 -0.8 -0.8 -0.8 1 -0.8 0.4 0.4 -0.6 0.2 -0.6 0.4 0.8 

  -0.5 0.8 0.5 0.4 0.4 -0.8 1 -0.4 -0.2 0.1 0.3 0.4 -0.7 -0.5 

R2= ω × ωT =         0.1 -0.1 0.0 -0.2 -0.4 0.4 -0.4 1 -0.1 -0.2 -0.4 -0.1 0.1 -0.1 

  -0.5 0.4 -0.4 -0.7 -0.5 0.4 -0.2 -0.1 1 -0.8 0.7 0.2 -0.5 0.5 

  0.3 -0.4 0.6 0.9 0.9 -0.6 0.1 -0.2 -0.8 1 -0.8 0.2 0.5 -0.7 

  -0.3 0.5 -0.6 -0.7 -0.6 0.2 0.3 -0.4 0.7 -0.8 1 -0.1 -0.6 0.6 

  -0.9 0.6 0.8 0.4 0.6 -0.6 0.4 -0.1 0.2 0.2 -0.1 1 -0.6 -0.7 

  0.9 -1.0 -0.3 0.1 0.1 0.4 -0.7 0.1 -0.5 0.5 -0.6 -0.6 1 0.2 

  0.4 -0.3 -1.0 -0.9 -0.8 0.8 -0.5 -0.1 0.5 -0.7 0.6 -0.7 0.2 1 
 

Tab. 17 The fundamental matrix Λ, made after the directional 

  6.7 0 0 0 

Λ = ωT × ω = 0 4.8 0 0 

  0 0 1.6 0 

  0 0 0 0.9 

cosines ω, as multiplication of matrices ωT × ω 
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9. Next possibility of evaluation of 

    geological factors 
 All, what was speaking before, is only the 

fundament of the next evaluation. There exist 

next highly effective ways of interpretation.  

I can mention the methods of taxonomy using  

2-dimensional, 3-dimensional, or more-

dimensional depictions of factors. It is possible to 

apply the methods of regression analysis, 

discriminate analysis or disperse analysis, too. 

The extent choice of methods is exceptionally 

large. One can solve tasks about extremes, as 

well. However, just method of factor analysis 

looks to be for the interpretation of well-logging 

data significant and this is why I should like to let 

someone who will be interested in studies of this 

method for well-logging data. In this paper I tried 

only to write a guidebook of the Method of 

Principal Components applied for a small well-

logging statistical set. New way of sophisticated 

Tab. 18   Factors of the depth points in the form 

               contributions of characteristics 

 F1 F2 F3 F4 F1+F3+F4 

R [Ωm] -0.7 1.0 -0.6 0.0 -1.3 

χ×106[SI] 1.3 -0.3 0.5 0.0 +1.8 

σ[μBq/g] -0.6 -0.2 2.2 0.7 +2.3 

ρ[g/cm3] -0.9 -0.4 1.0 -1.2 -1.1 

ε -0.6 -1.3 0.1 0.6 +0.1 

 

Tab. 19   Interpretation of factors after points of depth 

Interpretation of factors 

F1 Factor of ore magnetic minerals. 

F2 Factor of water content of rock. 

F3 Factor of ore radioactive minerals. 

F4 Factor of ore minerals nonmagnetic and nonradioactive. 

F1+F3+F4 Factor of ore content. 

Fig. 4 Factors of depth points and characteristics depicted in form of stripe plot 
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interpretation of well-logging data exists; however, big well-logging statistical sets need a bit other statistical way; it is about ways for big 

data set processing.  

 

10. Conclusions 
Due to one of two methods of the factor analysis remarked Principal Components Analysis applied for a well-logging statistical set  

I can present these conclusions: 

• Method PCA is well-available not only for well-logging registration, but for geophysical registration along with profile lines being 

on the surface of the earth, as well. It only needs to exchange the column of depth points for the column of profile points. 

• The input data you must standardize as relative ones in Tab. 2 which presents the basic table for the next data processing.  

• The analysis is after two different matrices of correlation. The first is the matrix of characteristics; the second is the matrix of the 

depth points. 

• For calculation of small statistical sets, you can use the processor Microsoft Excel, having Implements Solutionist and Finding 

Solution, in particular. 

• For the calculation of large statistical sets is advantageous to use processors such as MATLAB or Python. 

• The results of orthogonalization are modal matrices making it possible to form the matrices of directional cosines. 

• As result of the analysis after characteristics, there is a table of factors like the function of the borehole depth. This enables us to 

depict the factors in the form of classical continuous curves with the depth that presents the output depiction used by Log Analysts 

and Geologists. 

• Factors Fj* can depict logs as well with depth and you must them geologically reliably interpret. 

• Fig. 3 offers an interpretation as three-component ore and waste rock; fact, it can be quite well sands and sandstones having facies 

with pyrite, basalt gravels/cobbles and weathered potassium feldspars. 

• And not always the geological interpretation of factors successful is, even if the above factors reliably exist.  

• Next transformation makes the factors interpreted like curves of rock properties like those curves of the deterministic model. 

• As result of the analysis after the depth points there is the table of factors like relations of various characteristics. It is possible to 

depict them like stripe plots; all factors you can find geologically, however, not always is possible. The stripe plots present how which 

factors influences the corresponding characteristics, whether it is positive, negative or zero relations. 
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